Stronger Cuts from Weaker Disjunctions
نویسندگان
چکیده
We discuss an enhancement of the Balas-Jeroslow procedure for strengthening disjunctive cuts for mixed 0-1 programs. It is based on the paradox that sometimes weakening a disjunction helps the strengthening procedure and results in sharper cuts. When applied to a split cut derived from a source row of the simplex tableau, the enhanced procedure yields, besides the Gomory Mixed Integer cut (GMI), also inequalities that cut deeper in certain directions.
منابع مشابه
Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra
In this paper, we study the relationship between 2D lattice-free cuts, the family of cuts obtained by taking two-row relaxations of a mixed-integer program (MIP) and applying intersection cuts based on maximal lattice-free sets in R, and various types of disjunctions. Recently, Li and Richard (2007) studied disjunctive cuts obtained from t-branch split disjunctions of mixed-integer sets (these ...
متن کاملStrengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse
With stochastic integer programming as the motivating application, we investigate techniques to use integrality constraints to obtain improved cuts within a Benders decomposition algorithm. We compare the effect of using cuts in two ways: (i) cut-and-project, where integrality constraints are used to derive cuts in the extended variable space, and Benders cuts are then used to project the resul...
متن کاملMonoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctive Programs∗
This article investigates cutting planes for mixed-integer disjunctive programs. In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. For disjunctions arising from binary variables, it is known that these cutting planes are essentially the same as Gomory mixed-integer and mixed-integer rounding cuts. In this article, we investigate ...
متن کاملCutting Planes from Wide Split Disjunctions
In this paper, we discuss an extension of split cuts that is based on widening the underlying disjunctions. That the formula for deriving intersection cuts based on splits can be adapted to this case has been known for a decade now. For the first time though, we present applications and computational results. We further discuss extensions of the existing theory with respect to cut strengthening...
متن کاملGenerating Disjunctive Cuts for Mixed Integer Programs — Doctoral Dissertation
This report constitutes the Doctoral Dissertation for Michael Perregaard and is a collection of results on the efficient generation of disjunctive cuts for mixed integer programs. Disjunctive cuts is a very broad class of cuts for mixed integer programming. In general, any cut that can be derived from a disjunctive argument can be considered a disjunctive cut. Here we consider specifically cuts...
متن کامل